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An inclusion-based model of elastic wave velocities incorporating
patch-scale fluid pressure relaxation

S. Richard Taylor∗ and Rosemary J. Knight‡

ABSTRACT

We consider elastic wave velocities in fluid-saturated
porous media with pore fluids distributed in “patches”
(i.e., heterogeneity much larger than the typical pore
size). We model elastic properties of such materials using
inclusion-based effective medium theory (IBEMT). The
standard IBEMT formulation assumes insufficient time
during the wave cycle for pore fluids to flow in response
to wave-induced pressure gradients. Our approach ac-
counts for this flow, incorporating wave-frequency de-
pendent flow effects in the definition of effective elastic
moduli for patches. Effective moduli are used in con-
junction with IBEMT to estimate elastic moduli of the
composite material. In the low- and high-frequency lim-
its, the model reproduces previous theoretical results. At
intermediate frequencies, it yields results qualitatively
similar to other patch-scale models. We demonstrate this
approach, estimating elastic P-wave velocities and at-
tenuation in a porous rock that simultaneously contains
fluid-saturated patches of different sizes.

INTRODUCTION

There is substantial evidence from laboratory experiments
(Knight and Nolen-Hoeksema, 1990; Cadoret et al., 1995) and
theoretical models (White, 1975; Endres and Knight, 1989;
Gist, 1994; le Ravalec et al., 1996) that elastic wave veloci-
ties in fluid-saturated porous media can depend strongly on
the spatial distribution of pore fluids. In particular, it has been
observed (in the experimental studies referenced above) that
a porous medium in which the fluids are distributed heteroge-
neously is typically less compliant, and exhibits higher elastic
wave velocities, than the same medium with a more homoge-
neous distribution of pore fluids. To accurately model wave
velocities over the range of frequencies of interest to the geo-
physical community, it is important to account for this effect.
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In fluid-saturated porous media, two distinct scales of fluid
distribution are typically identified: the pore scale and the
“patch” scale. In the literature, the term “patch” is used for
scales above the pore scale. This includes, for example, sat-
uration heterogeneity at the centimeter-scale in laboratory
samples, and saturation heterogeneity at the scale of meters
(or more) in the subsurface. For each scale of heterogene-
ity, there is a characteristic time scale of fluid pressure relax-
ation, τ , that determines the elastic response at a given wave
frequency (e.g., Dvorkin et al., 1994). Consider, for example,
a liquid/gas-saturated medium in which fully liquid-saturated
regions (patches) are adjacent to fully gas-saturated regions.
When the medium is deformed by a passing elastic wave, the
induced fluid pressure is initially heterogeneous and there-
fore provides elastic reinforcement to the solid matrix. If the
wave period is much greater than τ , flow from liquid-saturated
patches to the gas-saturated regions will equilibrate (or relax)
the fluid pressure between macroscopic regions, thereby limit-
ing the extent to which the liquid reinforces the matrix. In the
other extreme, where the wave period is much less than τ , there
is insufficient time for significant relaxation. The patches are
then undrained, the liquid being effectively trapped within each
patch, and elastic reinforcement by the liquid is maximized.

A number of approaches have been proposed for modeling
the effects of patch-scale saturation heterogeneity. Le Ravalec
et al. (1996) treat distinct macroscopic patches as elastic in-
clusions within a background matrix. An inclusion-based ef-
fective medium theory (IBEMT) (le Ravalec and Guéguen,
1996) is then used to estimate the effective elastic moduli, and
hence the elastic wave velocities for the composite. Since the
IBEMT assumes that hydraulic communication between in-
clusions does not occur (i.e., inclusions are undrained), this
approach models the high-frequency, or unrelaxed, response
of the composite. A similar approach to the undrained case
(Knight et al., 1998), employs the Hashin-Shtrikman bounds
on elastic moduli rather than an inclusion-based theory.

The “gas pocket” model of White (1975), with a correc-
tion by Dutta and Seriff (1979), treats the full frequency range
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accessible to effective medium theory. This model assumes an
idealized fluid distribution in which a cubic array of spheri-
cal gas-saturated patches is embedded in an otherwise liquid-
saturated medium. White estimates the effective elastic mod-
uli for this medium, accounting for flow between liquid- and
gas-saturated regions. Dutta and Odé (1979) provide a more
rigorous solution of White’s model, incorporating Biot’s (1956)
equations of poroelasticity. While it is able to treat the full fre-
quency response of a porous composite with patchy saturation,
the White model is limited compared to IBEMT. In particular,
White allows for only a single length scale of heterogeneity,
rather than a range of simultaneous patch sizes. Furthermore,
the inclusion-based approach includes a variety of inclusion
geometries, whereas White treats only spherical patches.

The purpose of the present work is to further develop
IBEMT to model patch-scale saturation heterogeneity across a
wide frequency range. In particular, we remove the assumption
(usually included in IBEMT models) that the inclusions are
undrained. We accomplish this by using complex elastic moduli,
which describe both the elastic and dissipative components of
the response to sinusoidal deformation (e.g., Berryman, 1980a,
b). We model the viscoelastic response of a fluid-saturated
patch, accounting for pressure relaxation, by deriving an ex-
pression for the (complex) effective bulk modulus of the patch.
With the introduction of this effective modulus, we treat the dy-
namic response of the patch to sinusoidal deformation within
an IBEMT computation of the elastic properties of the com-
posite. This permits us to model the full frequency range treated
by White (1975), while retaining the advantages of the IBEMT
approach.

MODEL

We consider an idealized unit cell in a fluid-saturated porous
medium, consisting of a spherical region of radius a (the
“patch”, denoted as region 1), enclosed at the center of a sphere
of radius b>a (region 2). Both regions are assumed to be com-
pletely saturated with different fluids. This situation, illustrated
in Figure 1, is considered by White (1975). As in White, the
outer radius, b, is chosen to obtain the same global volumetric
proportions of the two fluids as in the medium being modeled.
That is, if the porosity in the two regions is identical, then a
and b are related by S1=a3/b3, where S1 is the global level of
saturation with the fluid in region 1.

Within each region all material properties (e.g., porosity, per-
meability, etc.) are spatially uniform. Also, the porosity within
each region is homogeneous, in that a uniform applied pres-
sure field will induce a uniform fluid pressure. We allow that
the material properties may change across the patch boundary,
which is consistent with the expectation that heterogeneity of
the fluid distribution coincides with heterogeneity of the un-
derlying lithology. These assumptions are the same as White’s.

In Appendix A, we derive a diffusion equation governing
the evolution of the fluid pressure, pf , induced by a passing
elastic wave. We obtain

∂pf

∂t
= Dp∇2 pf + αFp

φκd

∂p

∂t
, (1)

where p is the applied pressure field, φ is the porosity, κd is the
drained bulk modulus of the porous matrix, and α= 1− κd/κs

is commonly referred to as the “poroelastic parameter,” where

κs is the bulk modulus of the mineral solid. Dp and Fp are
functions of the material properties and are defined in the
Appendix A. Equation (1) describes the relaxation of fluid
pressure (via the diffusive term ∇2 pf ) from flow due to the
forcing term, p.

Under the effective medium assumption, the elastic wave-
length is much greater than the length scale of heterogeneity
(i.e., the unit cell size, b), so we approximate the pressure field p
to be uniform. Denoting the angular frequency of the incident
wave by ω= 2π f , where f is the wave frequency in hertz, we
represent the pressure field as p(t)= p0eiωt . Similarly writing
the overall volumetric dilatation of the patch as θ(t)= θ0eiωt ,
we can solve the diffusion equation (1) and obtain a relation
of the form

p0 = −κ∗θ0. (2)

This defines the effective bulk modulus of the patch, κ∗. That is,
the viscoelastic response of the patch to sinusoidal deformation
is identical to that of an equivalent homogeneous medium with
bulk modulus κ∗. In general, κ* will be a complex number,
reflecting that the stress and dilatation fields will be out of
phase as a result of fluid flow.

The solution of the diffusion equation (1), and isolation of
the parameter κ∗ in terms of material properties and the wave
frequency, is shown in detail in Appendix B, where we obtain
the expression

κ∗ = κd(1)

1− α1[G1 + F(ω)(G2 − G1)]
. (3)

To compute elastic properties of a porous composite, we
used equation (3) to estimate effective elastic moduli for all
patches, and apply an inclusion-based effective medium the-
ory to estimate elastic moduli for the composite (Berryman,
1980a, b). We model the “nonpatch” region by unsaturated

FIG. 1. Idealized model of a spherical fluid-saturated patch
of radius a (region 1), embedded in a spherical porous back-
ground of radius b (region 2) saturated with a different fluid.
[After Figure 1 of White (1975).]
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spherical patches to estimate the effects of fluid pressure re-
laxation on the effective bulk modulus of this region. For ex-
ample, in a medium with spherical liquid-saturated patches in
a gas-saturated background, we use equation (3) to compute
effective elastic moduli for both the water- and gas-saturated
regions. While this approach is only approximate, it permits one
to treat the two regions in a symmetric way, without regard for
which fluid is to be regarded as “patchy.”

For a medium saturated with two fluids, we expect that the
length scales, a1 and a2, associated with regions saturated with
fluids 1 and 2, respectively, will be approximated by

a1

a2
= S1

S2
, (4)

where S1 and S2 are the global levels of saturation with each
fluid. Accordingly, we use this equation to relate the radii, a1

and a2, of the patches used to represent each region. For patches
of multiple sizes or fluid types, we generalize this expression to

a1

S1
= . . . = ai

Si
= . . . , (5)

where ai is the radius of patches used to approximate the i th
region (fluid type or patch size), which occupies the fractional
volumetric proportion Si .

Frequency response of a Patch

Dvorkin et al. (1994) show that the characteristic timescale
of pressure diffusion, τ , out of a patch of radius a is given
by τ ≈a2/Dp where Dp is the pressure diffusivity, defined in
Appendix A. This timescale provides an estimate of the char-
acteristic wave frequency, f0= 1/τ , near the transition from the
drained to the undrained response as frequency increases. An
attenuation peak associated with a maximum rate of viscous
dissipation due to fluid flow is also expected near this character-
istic frequency. The model developed here is also governed by
this characteristic frequency [cf., equation (B-9)], along with
a characteristic frequency associated with pressure diffusion
within the region surrounding a patch [cf., equation (B-15)].

We characterize the full frequency response of a patch by the
frequency-dependent effective bulk modulus given by equa-
tion (3). To illustrate the form of this frequency response,
Figure 2 shows the real and imaginary parts of the effec-
tive bulk modulus, κ∗, versus the scaled frequency, a2 f , for
a water-saturated patch imbedded in a sandstone that is other-
wise saturated with air, at 12.5% water saturation (a/b= 0.5).
We have scaled the wave frequency by a2 since it can be
seen in Appendix B that the frequency and patch size enter
only through the term a2 f , and we can therefore use a sin-
gle curve to represent the response for all patch sizes. The
corresponding material data are given in Table 1. We ob-
serve the expected qualitative behavior, with the real part
of the bulk modulus increasing along a sigmoid curve as the
frequency is increased. The transition between the low- and
high-frequency limits occurs near the characteristic relaxation
frequency, where f ≈ 1/τ . The imaginary part of κ∗ (which
represents the stress in the patch that is out of phase with the
dilatation, and is associated with viscous dissipation caused by
fluid flow) exhibits a peak near the relaxation frequency, and
goes to zero in the low- and high-frequency limits. In these lim-
its, the pressure and dilatation within the patch are in phase.

Note that the transition from low- to high-frequency behav-
ior is very gradual, occurring over more than three frequency
decades. The response is also asymmetric about the charac-
teristic relaxation frequency. These aspects of the frequency
response are markedly different from that of the standard lin-
ear solid commonly used to model viscoelastic behavior (e.g.,
Mavko et al., 1998, 197).

EXAMPLE: MULTIPLE SCALES OF HETEROGENEITY

In porous rock, heterogeneity exists at a wide range of scales,
from pores (on the order of micrometers) to lithologic variation
(on the order of meters or greater). Our model does not provide
a fully consistent framework for treating multiple simultaneous

Table 1. Physical parameters for Spirit River sandstone
saturated with water and gas.

Parameter Numerical Value

Porous matrix (Spirit River sandstone)
Dry-frame bulk modulus, κd [GPa] 5.6∗
Dry-frame shear modulus, µd [GPa] 12.6∗

Porosity, φ 0.052‡

Permeability, K [µD] 1‡

Mineral solid (quartz)
Bulk modulus, κs [GPa] 38∗∗

Density, ρs [kg/m3] 2630∗∗
Water

Bulk modulus, κwater [GPa] 2.2
Viscosity, ηwater [10−3 Pa · s] 1
Density, ρwater [kg/m3] 1000

Gas
Bulk modulus, κgas [MPa] 0.8
Viscosity, ηgas [10−3 Pa · s] 0.05
Density, ρgas [kg/m3] 100
∗Estimated from velocity measurements by Knight and Nolen-
Hoeksema (1990).
‡From Knight and Nolen-Hoeksema (1990).
∗∗From le Ravalec et al. (1996).

FIG. 2. Computed real (solid line) and imaginary (dashed line)
parts of the effective bulk modulus, κ∗ [equation (3)], versus
the scaled wave frequency, a2 f , for a water-saturated patch
of radius a embedded in a gas-saturated sandstone, using
the model developed here. The corresponding material data
are given in Table 1. This illustrates the general form of the
frequency-response of a fluid-saturated patch, as well as the
dependence on patch size.
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scales of heterogeneity (where the treatment is complicated
by successively smaller scales of heterogeneity, which may be
embedded within larger patches); it does provide insight into
the qualitative behavior of such materials.

Consider an instance in which the fluids saturating a porous
rock occur in patches having a range of distinct sizes. There will
be a frequency threshold above which the pore fluids can be re-
garded as completely unrelaxed (i.e., above which flow caused
by wave-induced pressure gradients is negligible). In this case
the model of Knight et al. (1998) can be used to estimate elastic
velocities for the composite. As the wave frequency decreases
below this threshold, the wave period will be sufficiently long
for fluid pressure relaxation to occur across the smallest length
scale of heterogeneity. It is the smallest scale of heterogeneity
that is the first to relax because the distance over which fluid
pressures must diffuse is the shortest. This relaxation weakens
the elastic response of the composite, and there is an associated
decrease in the wave velocities.

If the wave frequency is decreased further, the wave period
eventually becomes sufficiently long that fluid pressure differ-
ences between neighboring patches of the next greater size
have sufficient time to relax. In this way, a sequence of re-
laxations occurs as the characteristic frequency (proportional
to 1/a2) corresponding to each successive length scale of het-
erogeneity, a, is traversed. When the wave frequency becomes
sufficiently low that the fluid pressure is completely relaxed at
the largest scale of heterogeneity, Gassmann’s (1951) formulas
for the elastic moduli of the composite become valid.

The model developed in the previous section applies in the
situation just described. We illustrate this by considering the
particular example of a water/gas-saturated porous rock in
which the water is present in distinct spherical patches of diam-
eter 5 mm and 5 cm. The resulting P-wave velocity and atten-
uation versus wave frequency are shown in Figure 3. We have
used the material properties given in Table 1, and assumed
that the medium is 80% water saturated, with the water be-
ing distributed in equal volumetric proportions between the
larger and smaller patches. We used the patch-scale relaxation
model to estimate effective elastic moduli for the patches, and

FIG. 3. Computed elastic P-wave velocity (solid line) and at-
tenuation (dashed line) versus wave frequency for a typical
water- and gas-saturated sandstone at 80% water saturation,
in which the water is distributed in equal volumetric propor-
tions between spherical patches of diameter 5 mm and 5 cm.
The corresponding material data are given in Table 1.

applied Berryman’s (1980a, b) IBEMT to estimate effective
elastic moduli for the composite, for wave frequencies rang-
ing from 1 Hz to 1 MHz. The velocity and attenuation curves
shown in the figure demonstrate two successive relaxations
that occur as the wave frequency is decreased from the com-
pletely unrelaxed limit to the completely relaxed limit. First the
smaller patches relax as the frequency decreases between 103

and 104 Hz (where there is a distinct drop in P-wave velocity
as well as a peak in attenuation), then the larger patches re-
lax as the frequency decreases further between 101 and 102 Hz
(where there is again a drop in P-wave velocity and a peak in
attenuation). It is interesting to note that if patch-scale het-
erogeneity exists at sufficiently many scales, the Q−1

p versus
frequency curve of Figure 3 approaches a straight line, corre-
sponding to the “constant Q−1” model.

DISCUSSION

In the low-frequency limit, the wave-induced fluid pres-
sures equilibrate throughout the pore fluids. In this case, un-
der the simplifying assumption that the porosity is uniform,
equation (3) for the effective bulk modulus simplifies to

κ∗ = κd + α2

φ

κeff
f

+ α − φ
κs

(ω→ 0). (6)

The “effective fluid” bulk modulus, κeff
f , is the Reuss average

over the fluid components:

1
κeff

f

= S1

κ f (1)
+ S2

κ f (2)
, (7)

where S1=a3/b3 and S2= 1− S1 are the global of saturations
with respect to fluids 1 and 2, respectively. Equation (6) re-
produces Gassmann’s (1951) formula for the bulk modulus of
an undrained medium, modified to account for the presence
of multiple fluid components (Domenico, 1977). Thus, in the
low-frequency limit, our model agrees with Gassmann’s rela-
tions, and therefore also with the low-frequency limit of the
corrected White model (White, 1975; Dutta and Seriff, 1979).

In the high-frequency limit, where there is insufficient time
during a wave cycle for flow to lead to pressure equilibration,
a fluid-saturated patch behaves as an undrained, hydraulically
isolated system. In this limit, we have F(ω)→ 0 in equation (3),
and we obtain

κ∗ = κd(1) +
α2

1
φ1

κ f (1)
+ α1 − φ1

κs(1)

(ω→∞). (8)

This reproduces Gassmann’s relation for the effective bulk
modulus of an undrained region saturated with fluid 1. In
Knight et al. (1998), this equation is used to estimate elastic
moduli of individual patches, assuming that the patches be-
have as undrained systems, and IBEMT is used to estimate
wave velocities for the composite. Thus our approach improves
on Knight et al. in that our model reduces to theirs in the high-
frequency limit, but also treats lower frequencies since we do
not assume that patches are hydraulically isolated.

As in Knight et al. (1998), we have made the somewhat re-
strictive assumption of homogeneous porosity, which further
requires that the pore fluids be homogeneously distributed
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within each macroscopic patch. Thus neither model can ac-
count for the effects of pore-scale fluid distribution, which
are known to be significant (Endres and Knight, 1989). The
inclusion-based model of le Ravalec et al. (1996) overcomes
this limitation and accounts for the simultaneous effects of
pore- and patch-scale saturation heterogeneity. However, their
model is applicable only when fluid pressures at all scales of
heterogeneity are unrelaxed.

The geometrical construction of our model is very similar to
that of White (1975). Thus, we expect the results of the two
models to agree closely when applied in the same modeling
situation. Indeed, we have shown above that the two models
are identical in the low-frequency limit of complete relaxation.
However, direct analytical comparison across the full range
of frequencies is not possible: the model presented here pro-
vides an expression for the effective properties of a patch only.
The IBEMT used to estimate the properties of the composite
medium is a separate component of the model and has been
left unspecified. This flexibility is not provided by the White
approach, where the effective medium theory is an inherent
part of the model and effective properties of the composite
(rather than individual patches) are computed directly.

To permit comparison of the two approaches on the same
basis, we compute effective properties of an idealized medium
using our inclusion-based model, together with a particular
IBEMT (Berryman, 1980a, b), and compare the results graph-
ically with those obtained using the White model. Figures 4
and 5 show the resulting P-wave velocity and attenuation ver-
sus wave frequency, as computed using both the White model
and the inclusion-based model developed here. The model
medium, detailed in Table 1, is a typical sandstone saturated
with water and gas, in which the gas exists in spherical patches
of radius 1 cm. The figure compares various levels of gas satu-
ration. Note that the two models agree very closely in both
velocity and attenuation, particularly at high levels of wa-
ter saturation. Thus we conclude that the model presented

FIG. 4. Computed elastic P-wave velocity versus wave fre-
quency for a water- and gas-saturated sandstone at various
levels of water saturation, in which the water is distributed
in patches of radius 1 cm. For comparison, results are shown
both for the inclusion-based model developed here (solid line)
and for the White (1975) model (dashed line). It can be seen
that the two models agree closely. The corresponding material
data are given in Table 1.

here generalizes the White model within an inclusion-based
framework.

Dutta and Odé (1979) have solved the White model more rig-
orously, using Biot’s (1956) equations of poroelasticity rather
than an effective medium approach. They obtain results that
agree closely with those of White, but are also able to account
for the inertial effects of solid-fluid coupling. In particular they
have identified the role of the Biot slow wave in the model. The
Dutta and Odé solution is clearly more sophisticated than ours
in this respect. The present model relies on an effective medium
theory to estimate elastic properties of the fluid-saturated com-
posite, and consequently is unable to account for inertial phe-
nomena such as the Biot slow wave. Nevertheless, many lim-
itations of the White model—including the requirement of a
single scale of heterogeneity and the restriction to spherical
geometry—are retained in the solution by Dutta and Odé. The
IBEMT approach advocated here does not rely on these as-
sumptions, and as such is a more versatile approach in situa-
tions where the effective medium approximation is valid.

CONCLUSION

IBEMT is a well-established and convenient framework for
modeling the elastic properties of heterogeneous materials
such as porous rock with patch-scale heterogeneity. However,
in its standard formulation, IBEMT precludes hydraulic inter-
action between distinct regions of the pore space. This has lim-
ited previous IBEMT models to situations where relaxation of
fluid pressure does not occur (due to sufficiently large patches,
high frequency, or low permeability).

We have shown that it is possible to eliminate these limita-
tions of IBEMT by replacing a fluid-saturated patch with an
equivalent elastic inclusion whose frequency-dependent bulk
modulus models the effects of fluid pressure relaxation. To
illustrate this approach, we have derived an expression for the
effective bulk modulus of a spherical patch, based on a model
similar to that of White (1975). In the high-frequency limit, the
resulting IBEMT model reduces to the model of Knight et al.
(1998), in the low-frequency limit, it reproduces Gassmann’s
(1951) low-frequency relations appropriately modified to
account for multiple fluid phases (Domenico, 1977). However,
the most important feature of the model is that for intermediate

FIG. 5. Same as Figure 4, except results are shown for P-wave
attenuation instead of P-wave velocity.
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frequencies (where the standard IBEMT formulation has pre-
viously been inapplicable), our predictions agree very closely
with the corrected White model (White, 1975; Dutta and Seriff,
1979). We therefore conclude that our approach is a general-
ization and embedding of the White model into the inclusion-
based framework.

The key benefit of our approach is that it extends IBEMT to
model elastic wave velocities and dispersion in the intermedi-
ate frequency regime. This is a significant contribution to the
inclusion-based modeling paradigm, the versatility of which
allows one to model diverse phenomena arising from hetero-
geneity. For example, we have illustrated how our approach
can model frequency-dependent behavior of media in which
patches of multiple sizes are simultaneously present. Similarly,
porous media containing additional solid or fluid phases are
easily accommodated. Patches having other than spherical ge-
ometry (e.g., ellipsoidal patches), and even multiple patches
having different geometries, could also be treated within this
framework, by deriving expressions for the complex moduli of
patches of different shapes. In contrast, the White model does
not easily permit these generalizations.

The chief limitation of the model presented here is that we
consider saturation heterogeneity at the patch scale only, ef-
fectively neglecting pore-scale effects. This limitation (which is
shared by the White model, and all other models) is serious,
since we expect that saturation heterogeneity, in most realistic
porous materials, will exist at many length scales ranging from
micrometers to kilometers. In order to accurately model and
interpret measurements of elastic wave velocities, the effect of
heterogeneity at all of these scales needs to be accounted for.
This is a significant challenge that requires that we continue
to improve our ability to model the complex scale-dependent
heterogeneity of natural geologic systems.
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APPENDIX A

PRESSURE DIFFUSION EQUATIONS

Here, we derive partial differential equations describing the
diffusion of fluid pressure in a porous medium. In a sample
of fluid-saturated porous medium, we consider a region of
volume V within which the medium is homogeneous, in that
the induced fluid pressure is spatially uniform when a uni-
form pressure p is applied at the region’s boundary. Under
this assumption, Guéguen and Palciauskas (1994) [following
Nur and Byerlee (1971)] derive the “constitutive relation of
poroelasticity,”

p− αpf = −κdθ, (A-1)

where pf is the induced fluid pressure and θ is the volumetric
dilatation of the region. Here, κd is the dry frame bulk modulus,
and α= 1− κd/κs, where κs is the bulk modulus of the mineral
solid.

The volumetric average,

θ = φθ f + (1− φ)θs, (A-2)

can be used to express the overall dilatation θ in terms of the
individual dilatations θ f and θs of the fluid and solid compo-
nents, respectively, where φ is the porosity. Assuming that the
fraction of the region’s boundary occupied by the fluid phase
is identical to the porosity [this assumption is discussed in Biot
(1956)], the same average can be used to relate the pressure at
the region’s boundary to the pressures pf and ps in the indi-
vidual components, i.e.,

p = φpf + (1− φ)ps. (A-3)

Since the solid component is subject to a homogeneous pres-
sure due to the pore fluid, the constitutive elastic relation for
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the solid component is given by

ps = −κsθs. (A-4)

The elastic relation for the fluid is

dpf

dt
= −κ f

dθ f

dt
− κ f Q

φV
, (A-5)

where κ f is the bulk modulus of the fluid. Here, Q represents
the volume rate of fluid flow out through the region’s bound-
ary. We use Darcy’s law v=−K/η∇ pf to express the volume-
averaged flow rate, v, in terms of the permeability, K , and
the viscosity, η. Since the region V is arbitrary, equation (A-5)
yields

∂pf

∂t
= −κ f

∂θ f

∂t
+ κ f K

φη
∇2 pf . (A-6)

This is equivalent to equation (C-8) of White (1975), with the
addition of a forcing term.

If we assume that the pressure field p is known, we can write
equation (A-6) in terms of p [using relations (A-1) through
(A-4)] to yield

∂pf

∂t
= Dp∇2 pf + αFp

φκd

∂p

∂t
, (A-7)

where the parameters Dp and Fp are given by

Dp = K Fp

φη
, (A-8)

1
Fp
= 1
κ f
− 1
κs
+ α

φκd
. (A-9)

APPENDIX B

EFFECTIVE BULK MODULUS OF A SPHERICAL PATCH

We consider a fluid-saturated, porous spherical patch of ra-
dius a, embedded at the center of a background medium of
radius b (see Figure 1). Since we regard the uniform pressure
field pas prescribed, we use equation (A-7) to describe the evo-
lution of the fluid pressure in the sample. Defining the dimen-
sionless radius r̂ = r/a, writing p= p0eiωt and pf = pf (r̂ )eiωt ,
and exploiting spherical symmetry, we obtain

iωpf (r̂ ) = Dp(i )

a2

1
r̂ 2

d

dr̂

(
r̂ 2 dpf (r̂ )

dr̂

)
+ iω

αi Fp(i )

φi κd(i )
p0,

(B-1)
where the subscript i = 1 for r̂ <a (inside the patch) and i = 2
for r̂ >a (outside the patch). The function pf (r̂ ) is constrained
to satisfy the following conditions:

p′f (0) = p′f (R) = 0, (B-2)

with R= b/a (i.e., no flow at the endpoint r = 0 or the boundary
r = b),

pf (1−) = pf (1+) (B-3)

(i.e., continuity of the pressure field at r =a), and

Z1 p′f (1−) = Z2 p′f (1+), (B-4)

with Zi = Ki /ηi (i.e., continuity of the fluid flux at r =a).
The volumetric dilatation field inside the patch can be writ-

ten, using the poroelastic relation (A-1), as

θ(r̂ )= − p0−α1 pf (r̂ )
κd(1)

= − p0

κd(1)

(
1−α1

pf (r̂ )
p0

)
. (B-5)

Thus the total dilatation of the patch, θ0, which is the average
of θ(r̂ ) over the patch, is given by

θ0 =
∫ 1

0
r̂ 2θ(r̂ )dr̂

= − p0

κd(1)

(
1− α1

∫ 1

0
3r̂ 2 pf (r̂ )

p0
dr̂

)
. (B-6)

Relating the total dilatation of the patch to the applied pres-
sure defines the effective bulk modulus, κ∗, via the relation

p0 = −κ∗θ0. (B-7)

We obtain, after solving equation (B-1) subject to the con-
straints (B-2) through (B-4) and simplifying,

κ∗ = κd(1)

1− α1[G1 + F(ω)(G2 − G1)]
, (B-8)

with dimensionless parameters

ϕi =
√

iωa2

Dp(i )
, Gi =

αi Fp(i )

φi κd(i )
, (B-9)

and

F(ω) = 3
ϕ2

1

A1 A2

A3 + A4
, (B-10)

A1 = (1− ϕ1)− (1+ ϕ1)e−2ϕ1 , (B-11)

A2 = M1 + M2e−2ϕ3 , (B-12)

A3 = (1− Rϕ2)
(
M3 + M4e−2ϕ1

)
, (B-13)

A4 = (1+ Rϕ2)
(
M5 + M6e−2ϕ1

)
e−2ϕ3 , (B-14)

ϕ3 = (R− 1)ϕ2 =
√

iω(b− a)2

Dp(2)
, (B-15)

M1 = ϕ3 − Rϕ2
2 + 1, (B-16)

M2 = ϕ3 + Rϕ2
2 − 1, (B-17)

M3 = −1− ϕ1 B+ B− ϕ2, (B-18)

M4 = 1− ϕ1 B− B+ ϕ2, (B-19)

M5 = 1+ ϕ1 B− B− ϕ2, (B-20)

M6 = −1+ ϕ1 B+ B+ ϕ2, (B-21)

B = Z1/Z2. (B-22)


